Transformer原理与代码精讲(PyTorch)

Rating 4.0 out of 5 (2 ratings in Udemy)
What you'll learn
- 学习注意力机制和自注意力机制
- 掌握Transformer原理
- 掌握Transformer的Pytorch实现代码
- 学习利用Transformer进行机器翻译
Description
Transformer发轫于NLP(自然语言处理),并跨界应用到CV(计算机视觉)领域。目前已成为深度学习的新范式,影响力和应用前景巨大。
本课程对Transformer的原理和PyTorch代码进行精讲,来帮助大家掌握其详细原理和具体实现。
原理精讲部分包括:注意力机制和自注意力机制、Transformer的架构概述、Encoder的多头注意力(Multi-Head Attention)、Encoder的位置编码(Positional Encoding)、残差链接、层规范化(Layer Normalization)、FFN(Feed Forward Network)、Transformer的训练及性能、Transformer的机器翻译工作流程。
代码精讲部分使用Jupyter …
Duration 3 Hours 58 Minutes
Paid
Self paced
Intermediate Level
Simplified Chinese (China)
10
Rating 4.0 out of 5 (2 ratings in Udemy)
Go to the Course
We have partnered with providers to bring you collection of courses, When you buy through links on our site, we may earn an affiliate commission from provider.
Paid
Self paced
Intermediate Level
Simplified Chinese (China)
10
Rating 4.0 out of 5 (2 ratings in Udemy)
Go to the Course